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Abstract. The effect of the spatial distribution of perforations on the flow from the reservoir to the wellbore for
single phase liquid flow is studied. The reservoir is taken to be isotropic and, for most of the paper, the model used
here assumes that the perforations and the wellbore are both undamaged. Thus, there is no change of permeability
around the wellbore and perforations. The pressure/flow along a single perforation is studied in detail first and
an integral equation is derived which can be solved numerically to give the pressure/flow everywhere along the
perforation. The interaction of the perforations is considered by an approximation in which each perforation is
represented by a point source of unknown strength positioned at the centre of the perforation. A simple ellipsoidal
model of the perforation is also considered which provides a faster approach for evaluating the flow. The resulting
flux of fluid from each perforation into the wellbore is presented numerically for the above-mentioned approximate
methods and the comparison with the full numerical method is also made. For the ellipsoidal perforation, the
modelling of the perforation skin effect (a mathematical treatment of pressure drops which is caused by perforation
damage) is also described, but no detailed numerical results are given.
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1. Introduction

The complicated engineering process of drilling for oil requires first identifying a reservoir,
usually by seismological methods. Once this has been done, a hole must be drilled with a
depth of thousands of metres in general. It is then cased with steel casing and cemented. The
cement is forced between the casing and the imperfect casing-rock interface in order to seal
the formation. To complete the well, which is to produce oil from the formation to the surface,
a communication path is created from the oil reservoir through the cement and casing to the
well. For natural completions this is usually done by perforating the casing-cement formation
using a perforating gun. This gun penetrates the casing, the cement, and the rock formation at
a prescribed set of locations varying in depth and phase angle.

Ideally, the geometry of these perforations is designed to optimise the flow of oil from
the reservoir to the well. It should also enhance well productivity by creating clear channels
through the formation and by making reasonably uniform holes and entry points through the
casing and cement.

Thus, the productivity of a perforated completion is influenced not only by the perforation
geometry but also by the complex manner in which it interacts with the formation characteris-
tics and the perforating environment. Figure 1 shows a typical well geometry of a perforated
completion; the parameters that influence the well productivity are shot density, perforation
depth, perforation diameter, and phase angle. In addition to the geometrical factors, a vari-
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ety of formation physical characteristics such as formation type (sandstone, limestone, etc.),
permeability, formation fluid, natural fractures, and shale laminations are also needed to be
addressed. Another major consideration in well productivity is the perforation environment
which includes the wellbore and perforation damage as well as the completion fluid which
is used for perforation clean-up. Well deviation and differential pressure between the well
and formation are also examples of environmental factors which interact with the others to
determine the flux from the reservoir into the well. A damaged wellbore or perforation, for
example, reduces the permeability of its surrounding area and thus affects the productivity of
the perforated completion. For optimum design, each completion must be addressed individ-
ually with all applicable factors balanced as effectively as possible. The complex interaction
makes some factors more important in one completion than in others. However, some of these
factors such as geometric parameters, level or direction of differential pressure, and choice of
completion fluid, are controllable. Various attempts at modelling these different factors have
taken place over the years, a selection ([1–12]) are given in the references.

In this paper, we address the importance of the perforation geometry and study the effect
of the spatial distribution of the perforations on the flow from the reservoir to the wellbore for
single phase liquid flow. The parameters affecting this are:

(a) Shot density: number of perforations per foot.
(b) Depth of perforation penetrationin to the reservoir.
(c) Shot phasing: angular pattern or perforation distribution.
(d) Diameter of the perforated holein the casing and the reservoir.
To aid in deducing a semi-analytical description of the flow we will take advantage, wher-

ever possible, of small parameters in the problem. For example, the diameter of the perforated
hole is usually small, about one tenth of the wellbore diameter and about one tenth of the hole
spacing. This means that, to a reasonable approximation, when we view a given perforation
in a coordinate system centred on it, it feels the influence of the other perforations as if they
were an unknown distribution of sources along their length. When solving the problem for
this individual perforation interacting with the unknown distribution of sources for the other
perforations, we get an equation for this particular open perforation’s source distribution.
Doing this for each perforation in turn should give us a system of algebraic equations for each
of the source densities. In this way, it might be possible to even give a detailed analysis of an
individual perforated hole with a damaged zone etc. and of individual perforations that may
be closed. The case when perforations are close together can be treated by the full method, a
modification of the method used here where we allow the full distribution of sources on each
perforation to be unknown. A variety of numerical models simulating perforated completions
have been considered in the literature. These include Harris [13] who used finite differences,
Klots et al.[14] who used a finite element model, Locke [15] used a commercial finite element
model in his study of perforated well productivity, and many others. For a more detailed
literature survey on related numerical approaches and a recent treatment (see Dogulu [16]) in
which a near-wellbore grid is coupled to a coarse block reservoir simulator.

The approach we take here can be considered complementary to the direct numerical treat-
ments of the above authors. It can, in principle, be used to detect which of the given set of
perforations is flowing. This is done when the analysis is used with a tool such as a spinner
detecting pressure variations in the well. Also the details of the variation of the flow into
the perforation along its length coupled together with a model for the transport of sand grains
within a perforation, such as that of Pearson and Zazovsky [17], could help with understanding
the problem of obtaining clean perforations.
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2. Formulation of the problem

For isothermal flow of fluids of constant compressibility,c, the densityρ can be written as

ρ = ρ0 exp(c(p − p0)), (2.1)

whereρ0 is the value ofρ at some reference pressurep0. From the equation of continuity we
have

∇ · (ρu) = − ∂
∂t
(φρ), (2.2)

whereu is the velocity vector andφ is the porosity. From Darcy’s law, valid for laminar flow at
low Reynold’s number, we can write (using the summation convention over repeated indices)

ui = −kij
µ

∂p

∂xj
, (2.3)

whereµ is the viscosity of the fluid andkij is the permeability tensor of the formation assumed
constant in the undamaged formation. In deducing (2.3) we have neglected the influence of
gravity. Using (2.3) in (2.2), we obtain

∂

∂xi

(
ρkij

cµ

∂p

∂xj

)
= ∂

∂t
(φρ), (2.4)

and using (2.1) we get

∂

∂xi

(
kij

cµ

∂p

∂xj

)
= φ ∂ρ

∂t
, (2.5)

where the porosityφ is assumed constant. Thus rewriting (2.5) as

∂

∂xi

(
Kij

∂ρ

∂xj

)
= ∂ρ

∂t
, (2.6)

with Kij = kij /cφµ a ‘hydraulic diffusivity’ tensor and recalling the relationship (2.1) forρ
in terms ofp, we note that we have not assumed that the compressibilityc is small. The usual
approximateequation for the pressure (assumingc small) would be

∂

∂xi

(
Kij

∂p

∂xj

)
= ∂p

∂t
, (2.7)

in the above notation. For the moment, there is no extra difficulty in working with the full
Equation (2.6). Note that, if the flow is steady, we can set∂ρ/∂t = 0 = ∂p/∂t in Equa-
tion (2.6) or (2.7), and in principle, we can write the full problem of interactions amongst
all the perforations as systems of simultaneous integral equations. Note, however, that any
of these solution methods is complicated because of the non-axisymmetric nature of the
perforation arrangement even in the situation when the damaged zones around the perforated
holes are neglected. There is also the possibility here of treating non-isotropic permeability.
Furthermore, in the analysis of Sections 3 and 4 to follow, the boundary conditions are pressure
specified in the perforations and zero flux at the wellbore. This latter condition is∇p = 0 on
the wellbore (for isotropic permeability) which is equivalent to∇ρ = 0 from (2.1) above. We
will discuss (2.7) in what follows; however, the results can be applied to the situation of (2.7)
and (2.1) by the elementary change of variable in (2.1).
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Figure 1. Wellbore geometry.

3. A single perforation

The complex interaction of the factors make it impossible to find simple global solutions
to designing or analysing well completion. To further our analysis, some simplifications on
formation characteristics and perforation environment are made. Thus, the analog model used
here assumes

(a) ideal (undamaged) perforations,
(b) no damage around the wellbore,
(c) an isotropic reservoir.
The usual approximate equation for pressure is, from (2.7)

∇2p − κ ∂p
∂t
= 0, (3.1)

whereκ is the constant hydraulic diffusivity. We also assume that a constant far-field pressure
has been subtracted fromp so thatp tends to zero at infinity. The average flux of each perfo-
ration is derived to present the effect that the spatial distribution of the perforations has on the
flow. To achieve this, we first look at a single perforation in detail for the flux on the length of
the perforation. The idea here is to model the flux by a continuous distribution of ring sources
Q(r)dr of unknown strength along the perforation. We begin by considering a point source
solution interacting with the wellbore boundary. This point source solution is later replaced by
a ring source solution of equivalent strength. Finally, this solution is multiplied by the function
Q(r)dr and integrated over the length of the perforation to obtain the solution required.

For convenience, a polar coordinate system(r, θ, z) is used here with the origin coinciding
with the centre of the wellbore as shown in Figure 1. Assuming a point source at(rc, θc, zc) at
time t = 0, we have the equation for pressure as,

∇2p − ∂p

∂t1
= −δ(r − rc)

rc
δ(θ − θc)δ(z− zc)δ(t1), (3.2)
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wheret = t1κ has been used to absorb the hydraulic diffusivity into the time coordinate. We
first take the Laplace transform overt1 to give

∇2p̄ − sp̄ = −δ(r − rc)
rc

δ(θ − θc)δ(z− zc). (3.3)

Note that a source originating at a different time can easily be accommodated by multiplying
the right-hand side of (3.3) by an appropriate function ofs. It is further assumed that̄p is an
even function and has Fourier series

p̄ = 1

2
p̄0(r, z)+

∞∑
n=1

p̄n(r, z) cos(n(θ − θc)). (3.4)

In addition,δ(θ − θc) has Fourier series

δ(θ − θc) = 1

2π
+ 1

π

∞∑
n=1

cos(n(θ − θc)). (3.5)

This is substituted in Equation (3.3) and by equating the coefficients of cos(n(θ − θc)), we
obtain

1

r

∂

∂r

(
r
∂p̄n

∂r

)
+ ∂

2p̄n

∂z2
−
(
s + n

2

r2

)
p̄n = − 1

πr
δ(r − rc)δ(z− zc). (3.6)

Taking the Fourier transform of the equation overz, the equation becomes,

1

r

∂

∂r

(
r
∂ ¯̄pn
∂n

)
−
(
ζ 2+ s + n

2

r2

)
¯̄pn = −

1

πr
δ(r − rc)eiξzc , (3.7)

with

¯̄pn =
∫ ∞
−∞

p̄ne
iξz dz. (3.8)

In addition, the pressure inside the wellbore remains constant while in the reservoir, some
distance away from the wellbore, the pressure is taken to be zero. Thus,

¯̄pn→ 0 as r →∞
∂ ¯̄p/∂r = 0 on r = ra

}
, (3.9)

wherera is the radius of the wellbore. Equation (3.7) with the right hand side replaced by
zero, satisfying the boundary condition of¯̄pn in Equation (3.9), has a general solution

¯̄pn = AKn(r
√
ξ2+ s), (3.10)

whereKn is a modified Bessel function of the second kind andA unknown. A particular
integral is derived by substitution ofKn(r

√
ξ2+ s)V in (3.7) to give

V = Kn(rc
√
ξ2+ s)
π

∫ r

ra

eiξzcdr∗

r∗K2
n(r
∗
√
ξ2+ s)

, rc ≥ r, (3.11)

= Kn(rc
√
ξ2+ s)
π

∫ rc

ra

eiξzcdr∗

r∗K2
n(r
∗√ξ2+s)

, rc ≤ r. (3.12)
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Using the boundary condition (3.9), the unknown constantA is found to be

A = −Kn(rc
√
ξ2+ s)eiξzc

πra
√
ξ2+ sK ′n(ra

√
ξ2+ s)Kn(ra

√
ξ2+ s)

. (3.13)

Thus a solution for̄̄pn in Equation (3.7) is

¯̄pn = (A+ V )Kn(r
√
ξ2+ s), (3.14)

with A andV given above.
To replace the point source by a ring source in the solution, we first subtract a free-space

point source solution from that above. The free-space point source solution of Equation (3.2)
in the transformed domain is

¯̄pn = V0Kn(r
√
ξ2+ s), (3.15)

and

V0 = Kn(rc
√
ξ2+ s)
π

∫ r

0

eiξzcdr∗

r∗K2
n(r
∗
√
ξ2+ s)

, rc ≥ r, (3.16)

= Kn(rc
√
ξ2+ s)
π

∫ rc

0

eiξzcdr∗

r∗K2
n(r
∗
√
ξ2+ s)

, rc ≤ r. (3.17)

SubtractingV0 from V , we obtain

V − V0 = −Kn(rc
√
ξ2+ s)
π

∫ ra

0

eiξzcdr∗

r∗K2
n(r
∗√ξ2+ s) ,

= −Kn(rc
√
ξ2+ s)
π

· In(ra
√
ξ2+ s)

Kn(ra
√
ξ2+ s)e

iξzc ,

(3.18)

and thus,

A+ V − V0 = −Kn(rc
√
ξ2+ s)
π

(
In(ra

√
ξ2+ s)+ ra

√
ξ2+ s In+1(ra

√
ξ2+ s)

Kn(ra
√
ξ2+ s)− ra

√
ξ2+ s Kn+1(ra

√
ξ2+ s)

)
eiξzc ,

= −Kn(rc
√
ξ2+ s)
π

I ′n(ra
√
ξ2+ s)

K ′n(ra
√
ξ2+ s)e

iξzc .

(3.19)

In Equation (3.18) above, we have used Wronskians relation (Abramowitz and Stegun [18,
Equations 9.6.15 and 9.6.26] for Bessel functions, namely,

W {Kν(z), Iν(z)} = Iν(z)Kν+1(z)+ Iν+1(z)Kν(z) = 1

z
, (3.20)

and the recurrence relations,

L′ν(z) = Lν+1(z)+ ν
z
Lν(z), (3.21)

whereLν(z) can beIν(z) or eνπ iKν(z). These relations together give, after some algebra,
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d

dz

(
In(z)

Kn(z)

)
= 1

zK2
n(z)

. (3.22)

Note thatp → 0 as r → ∞ and p is finite for r = 0. Taking the inverse Fourier
transform of ¯̄pn in Equation (3.14) with the point source of Equation (3.15) removed, the
solution, denoted bȳpw, is

p̄w = −1

2π2

∫ ∞
0
K0(rξ̃ )K0(rcξ̃ )

I ′0(raξ̃ )
K ′0(raξ̃ )

cos(ξ(z− zc))dξ,

− 1

π2

∞∑
n=1

cos(n(θ − θc))
∫ ∞

0
Kn(rξ̃ )Kn(rcξ̃ )

I ′n(raξ̃ )
K ′n(raξ̃ )

cos(ξ(z− zc))dξ,
(3.23)

and ξ̃ = √
ξ2+ s. Note that if we make the approximation that the wellbore radiusra is

much less thanrc, a simple approximation tōpw can be deduced. (See Equation (A.13) in the
Appendix.)

For the ring source solution required, we take the point source solution for∇2p̄ − sp̄ = 0
and integrate over the ring. Thus, denoting the solution byp̄r , we have

p̄r = 1

4π

∫ 2π

0

e−
√
sRρdφ

R

= 1

4π

∫ 2π

0

ρdφ

R
+ 1

4π

∫ 2π

0

(e−
√
sR − 1)

R
ρdφ,

(3.24)

whereρ, not to be confused with the density used earlier, is the radius of the ring andR =√
(x − xc)2+ (y − yc)2+ (z− zc)2 where(xc, yc, zc) are the coordinates of the point source

on the ring. Note that we have assumed that the centre of the ring coincides with thex-axis
and thus the coordinates on the ring can be written as(xc, ρ cosφ, ρ sinφ). By changing the
integration variable fromφ = φ1 − π and using the substitution cosφ1 = 1− 2 sin2(φ1/2),
we may write Equation (3.24) as follows

p̄r = ρ

π

k(mc)√
(
√
y2 + z2+ ρ)2+ (x − xc)2

+ ρ

π

k(mc)

((
√
y2 + z2+ ρ)2+ (x − xc)2

, (3.25)

wherek(mc) is the complete elliptic integral of the first kind (Abramowitz and Stengun [18,
Equation 17.3.1]). Bothk(mc) andk(mc) depend ony, z, ρ andx − xc with

k(mc) =
∫ π/2

0

dφ√
1−mc sin2 φ

, mc = 4ρ
√
y2 + z2

(
√
y2 + z2+ ρ)2+ (x − xc)2

, (3.26)

and

k̄(mc) =
∫ π/2

0

e
√
s
√

1−mc sin2 φ

√
(
√
y2+z2+ρ)2+(x−xc)2 − 1√

1−mc sin2 φ

dφ. (3.27)

Note that wheny2 + z2 = ρ2 andx = xc, i.e. mc = 1, k(mc) diverges atπ/2 while k(mc)
remains finite. The elliptic functionk(mc) has a limit
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lim
mc→1

k(mc)→ 1

2
log

(
16

1−mc
)
. (3.28)

Thus, writing

k0(mc) = k(mc)− 1

2
log

(
16

1−mc
)
, (3.29)

we may remove the singularity and obtain

log

(
16

1−mc
)
= log(16(4ρ2 + (x − xc)2)− 2 log|x − xc|. (3.30)

The only singularity is whenx = xc for the term log|x − xc|, which can be dealt with
separately without too much complication.

As described at the beginning of the section, we can now combine the three solutions
together. This is done by taking the point source solution with the wellbore boundary, sub-
tracting out the point source solution of an infinite medium and replacing it with a ring source
solution. Superposing over the length of the perforation, the solutionsp̄r andp̄w are multiplied
by some unknown density functionQ(r)dr along the perforation to give,

p̄(r, θ, z) = 1

2π

∫ rb

ra

Q(rc)p̄r(r, θ, z)drc +
∫ rb

ra

Q(rc)p̄w(r, θ, z) drc, (3.31)

wherera is the radius of the wellbore andrb is the end of the perforation. The two solutions
p̄r andp̄w are also functions ofrc, θc, andzc. Note that the density functionQ(rc) in the first
integral is divided by 2π to ensure that the point source is of equal strength to that of the ring
source solution in the limitρ → 0. It is also assumed that, within the perforations, the pressure
remains constant. Thus, fory2 + z2 = ρ2 andθ = θc, p = pf , a constant. This condition
could, of course, be easily generalised by replacing the constantpf with a function ofr on the
perforation. The unknown density function in Equation (3.31) can be evaluated numerically
by discretising the integrals inton intervals overr andrc to give a system ofn + 1 equations
with n+ 1 unknowns, namelyQ(ri)’s, i = 1,2, . . . n+ 1. The system is inverted numerically
to giveQ(ri)’s along the perforation.

Note also the functionQ(r) could be singular at both ends of the integral. To avoid this, a
simple change of integration variable is required, i.e.

rc =
(
ra − rb

2

)
(1− cosφ)+ rb,

r =
(
ra − rb

2

)
(1− cosθ0)+ rb, (3.33)

and

Q(rc) = F(φ)

sinφ
. (3.34)

The formulation given here applies to the full transient problem. In principle, the time de-
pendence of the pore pressure profile in the formulation could be determined by solving (3.31)
for discrete values ofs, the Laplace transform variable, and inverting the Laplace transform
numerically. However, detailed results will be given for the steady state case,s → 0, of the
above formation.

Some simple limiting results can be obtained from the full formulation (3.31). Multiplying
(3.24) by 1/sand inverting the Laplace transforms, we obtain
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pr = 1

4π

∫ 2π

0

ρ

R
dφ + 1

4π

∫ 2π

0

(
erfc

(
R

2
√
t1

)
− 1

)
ρ

R
dφ. (3.35)

The first term leads to the steady state limit used in the next section. If we expand the second
term ast1 tends to infinity, we get

pr = 1

4π

∫ 2π

0

ρ

R
dφ + 1

4π3/2

1

t
1/2
1

∫ 2π

0
ρdφ +O(t−3/2

1 ). (3.36)

Thus it can be seen that ast1 tends to infinity, Equation (3.31) tends to the steady-state equa-
tions with a correction term tending to zero likeρQ̄/(t1/24π3/2), wheret = t1κ, κ being the
hydraulic diffusivity in (3.1) and

Q̄ =
∫ rb

ra

Q(rc)drc. (3.37)

4. Interaction between perforations

The first example considered below is that of a steady state flow. As a consequence, the
Laplace transform variables is dropped from the equations above and the overbar ofp is
ignored. The interaction between the perforations is characterised by the resulting average
density functionQ(r)’s of the perforations. It is expected that each perforation is at some
distance away from the others so that the effect one perforation has on the others can be
approximated byQ̄ · H̄ (r, θ, z) at the centre of the perforation. Evaluated atrc = (ra + rb)/2,
the functions are given by

Q̄i =
∫ rb

ra

Qi(rc)drc, (4.1)

and

H̄j (r, θ, z) =
(

1

4πR
+ pw(r, θ, z)

)
rc=(ra+rb)/2

, (4.2)

whereR = √(x − xc)2+ (y − yc)2+ (z− zc)2 with (xc, yc, zc) being the centre of the per-
foration. In this case, each perforation is seen by all the others as if it were a source (or sink)
of unknown strength, denoted bȳQ, acting at the centre of the perforation and interacting
with the impermeable wellbore. Thus, for the interaction of allN perforations together, the
following equation is obtained,

p(r, θ, z) =
∫ rb

ra

Hj(r, θ, z)Qj (rc)drc +
N∑

i=1,i 6=j
Q̄j H̄j (r, θ, z)rc=(ra+rb)/2, (4.3)

where the subscriptsi andj relate the functions to the corresponding perforations forj =
1,2, . . . , N . Note thatHj(r, θ, z) is different fromH̄i(r, θ, z) and defined as

Hj(r, θ, z) =
(

1

2π
pr(r, θ, z)+ pw(r, θ, z)

)
rc=(ra+rb)/2

, (4.4)

with p̄w andp̄r given by Equations (3.23) and (3.24) ignoring the Laplace transform variable.
Thus, on the boundary of perforationj wherez = zj , θ = θj , andra < r < rb, we have
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Figure 2. The skin effect

pf =
∫ rb

ra

Hj (r, θj , zj )Qj (rc) drc +
N∑

i=1,i 6=j
Q̄iH̄i(r, θj , zj )rc=(ra+rb)/2, (4.5)

whereQ̄i ’s are unknowns andpf is a constant. Discretising bothr andrc into n intervals,
denoted byrs andrt respectively with the subscriptss, t = 1,2, . . . n, we obtain the following
system of equations,

p
f
(s) = A(s, t)Q

j
(t)+

N∑
i=1,i 6=j

Q̄iH̄ i(s), (4.6)

where matrixA(s, t) corresponds toHj(r, θj , zj ) evaluated atr = rs andrc = rt . Similarly,
vectorsQ

j
(t) andHi(s) correspond to functionsQj andHi atr = rs andrc = rt whilep

f
(s)

is a constant vector. Writing Equation (4.6) as

A−1(t, s)p
f
(s) = Q

j
(t)+

N∑
i=1,i 6=j

Q̄iA
−1(t, s)H̄ i(s), (4.7)

we can integrate overrc from ra to rb to give∫ rb

ra

A−1(t, s)p
f
(s)drc = Q̄j +

N∑
i=1,i 6=j

Q̄i

∫ rb

ra

A−1(t, s)H̄ i(s)drc. (4.8)

This procedure gives a system ofN equations forj = 1,2, . . . N with N unknownQ̄j ’s. The
solution for this gives theN averageQ̄j ’s.

5. Perforation skin effect

For the results obtained so far, we have assumed ideal perforations. This means that no perfo-
ration damage has occurred during well completion. However, the same procedure can still be
used when the perforation is surrounded by a damaged zone. In this case, the skin effect due
to the perforation damage is absorbed into the boundary condition. In what follows, a brief
description of modelling this skin effect is given.
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The perforation is assumed to take the shape of an ellipsoid with the permeability of the
skin, the damage zone, beingκ = κ1, andκ = κ2 as the formation permeability (see Fig-
ure 2). Isotropy is assumed in both regions. To model the skin effect on the perforation with
a prescribed boundary condition, we derive another system with a modified constant pressure
on the perforation boundary. However, the fluxes into the perforations of both models must
remain the same. Using the substitution

x2

ω + a1
+ y2

ω + a2
+ z2

ω + a3
= 1, (5.1)

and assuming thatp depends only onω, we observe that the equation∇2p = 0 becomes

d2p

dω2
+ 1

2

(
1

ω + a1
+ 1

ω + a2
+ 1

ω + a3

)
dp

dω
= 0. (5.2)

A treatment of certain nonlinear diffusion models using a somewhat similar approach can be
found in Atkinson [19]. On the boundary of the perforationω = ω0, the pressure remains
constant. Assuming the region of the damaged zone is bounded byω = ω0 andω = ω1,
we expect the pressure to be continuous across the boundary. In addition, the flux is also
continuous across the perforation boundaryω = ω1. Thus, the boundary conditions are

ps = p, on ω = ω0, (5.3)

and

p = ps, κ1
dps
dω
= κ2

dp

dω
on ω = ω1, (5.4)

wherep andps denote the pressure distribution in the reservoir and skin, respectively. Inte-
grating Equation (5.2), we have

dp

dω
= A2√

(ω + a1)(ω + a2)(ω + a3)
. (5.5)

Subject to the continuity of pressure across the boundary, Equation (5.5) is integrated further
to give the pressure in the reservoir as

p = A2√
a1− a2

log

∣∣∣∣√ω + a1−√a1 − a2√
ω + a1+

√
a2 − a2

∣∣∣∣, (5.6)

with a2 = a3, a1 > a2 andA2 unknown, whereas the pressure in the damage zone is found to
be

ps = A1√
a1− a2

{
log

∣∣∣∣√ω + a1 −√a1− a2√
ω + a1 +√a1− a2

∣∣∣∣− log

∣∣∣∣√ω1+ a1 −√a1− a2√
ω1+ a1 +√a1− a2

∣∣∣∣}

+ A2√
a1− a2

log

∣∣∣∣√ω + a1−√a1 − a2√
ω + a1+√a1 − a2

∣∣∣∣.
(5.7)

Continuity of flux on the perforation boundaryω = ω1 requires

κ1
dps
dω
= κ2

dp

dω
. (5.8)
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This givesA2(κ2− κ1) = κ1A1l. Finally, using the boundary conditionp = p0 atω = ω0, we
derive

p0 = A1√
a1− a2

{(
κ2

κ2− κ1

)
log

∣∣∣∣√ω0+ a1 −√a1− a2√
ω0+ a1 +√a1− a2

∣∣∣∣
− log

∣∣∣∣√ω1+ a1−√a1− a2√
ω1+ a1+√a1− a2

∣∣∣∣}.
(5.9)

The flux produced by this skin model at the perforation boundary is

κ1
dps
dω

at ω = ω0. (5.10)

A second model of a homogeneous reservoir without skin but with a modified pressure bound-
ary condition inside the perforation,e.g.pr = p∗0 atω = ω0, has solution

pr = p∗0√
a1− a2

(
log

∣∣∣∣√ω + a1 −√a1− a2√
ω + a1 +√a1− a2

∣∣∣∣− log

∣∣∣∣√ω0+ a1 −√a1− a2√
ω0+ a1 +√a1− a2

∣∣∣∣) , (5.11)

and permeabilityκ2. The fluxes into the perforation from these two models can be made the
same if we chosep∗0 such that

κ1 = dps
dω
= κ2

dpr
dω

at ω = ω0. (5.12)

This gives the result

p∗0 =
p0(κ1/κ2) log

∣∣∣∣√ω0+ a1−√a1 + a2√
ω0+ a2+√a1 − a2

∣∣∣∣
log

∣∣∣∣√ω0+ a1−√a1 + a2√
ω0+ a2+√a1 − a2

∣∣∣∣− (1− κ1

κ2

)
log

∣∣∣∣√ω1+ a1 −√a1+ a2√
ω1+ a2 +√a1− a2

∣∣∣∣ . (5.13)

6. Approximation method

When considering the interaction between the perforations in Section 4, we assume that, from
a distance, the effect of the perforation can be approximated by the average ofQ(r) over the
length of the perforation, denoted byQavg, evaluated at the centre of the perforation. This idea
is extended further in this section to derive an approximation method for the evaluation of
Qavg.

In order to take into account the interaction between an individual perforation and the
wellbore, we imagine the wellbore sees the perforation as if it were a source or sink of
unknown strength sitting at its centre. By solving for the interaction between this source and
the wellbore, we are then able to distribute the resulting pressure field, which is felt back at
the perforation, uniformly over the above mentioned ellipsoidal model of the perforation.

The interaction between the point and the wellbore is derived as before and the resulting
pressure field, due to the point source, is given by equations (3.10)–(3.13). The point source
is to be replaced by an ellipsoid. Thus, removing the point source, we have
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pw = −1

2π2

∫ ∞
0
K0(rξ̃ )K0(rcξ̃ )

I ′0(raξ̃ )
K ′0(raξ̃ )

cos(ξ(z − zc)) dξ,

− 1

π2

∞∑
n=1

cos(n(θ − θc))
∫ ∞

0
Kn(rξ̃ )Kn(rcξ̃ )

I ′n(raξ̃ )
K ′n(raξ̃ )

cos(ξ(z − zc)) dξ,

(6.1)

which is multiplied by some unknownQ at rc = (rb + ra)/2. The pressure field for the
ellipsoid in a homogeneous region as derived in the previous section, without the wellbore, is

pe = −1

8π
√
a1 − a2

log

∣∣∣∣√ω + a1−√a1− a2√
ω + a1+√a1− a2

∣∣∣∣ , (6.2)

multiplied again by some unknown strengthQ with a2 = a3 and a1 > a2. Note that as
R → ∞, pe → 1/4πR which agrees with the point source at infinity. Thus, for a single
perforation interacting with the wellbore, the pressure field can be approximated by

p(r, z, θ;w) = {pw(r, z, θ; rc, zc, θc)+ pe(w)}Q, (6.3)

where

(x − xe)2
ω + a1

+ (y − ye)
2

ω + a2
+ (z − ze)

2

ω + a3
= 1, (6.4)

with (xe, ye, ze) being the centre of the ellipsoid. For a single perforation, the unknown con-
stantQ is solved by imposing the boundary condition that the differential pressure remains
constant,pf say, onw = 0.

For the interaction of then perforations, we use the same argument as before. That is the
effect of the perforationi on perforationj is approximated by a point source sitting at the
centre of the ellipsoid. Thus, on the boundary of perforationj , we have

pf = Qjpj(rj , θj , zj ;ωj )+
n∑

i=1;i 6=j
Qip̃i(rj , θj , zj ; ri, θi , zi), (6.5)

with the assumption thatωj = 0 for pj and(rj , θj , zj ) is the centre of perforation ellipsoidj .
Note that the approximation of perforationi by a point source is given by

p̃i(rj , θj , zj ; ri, θi , zi) = pw(rj , zj , θj ; ri, zi, θi)+ 1

4πR
, (6.6)

evaluated atri = (ra + rb)/2 whilepj remains as

pj(r, θ, z;w) = pw(r, z, θ; rj , zj , θj )+ pe(w). (6.7)

Equation (6.5) then gives a system ofn equations which is solved numerically to give the
n Qi ’s.

7. Results

The flux of fluid across a control surface is defined as∫
A

u.n dA, (7.1)
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Figure 3. An example of perforation arrangements on a) the horizontal plane and b) the vertical plane.

whereA is the area of surface andn is normal to the surface. From Darcy’s law,

ui = −κij
µ

∂p

∂xj
, (7.2)

with κij = κδij for an isotropic medium. Thus the flow into the well from a given perforation
is

A

(
κ

µ

∂p

∂r

)
= − κ

µ

∫ τb

τa

Q(r) dr. (7.3)

Note that the flux of fluid due to the ring source or its equivalent point source is given by∫
s
(∂p/∂R) ds andp → Q/(4πR) asR →∞, wheres is the surface of the sphere andR is

the distance from its centre. Thus the flux of the ring is found to be−Q(κ/µ).
The interaction between the perforations, as described in the previous sections, is simplified

by the assumption that the effect of a perforation, when observing it from another perforation,
can be approximated by a point source sitting at its centre. The accuracy of this assumption is
verified in the table below using an example describing the interaction of two perforations.

The results discussed here are all evaluated with the typical values given below

wellbore radius : 4 inches,

perforation radius : 0.1 inches,

perforation length : 10 inches,

differential pressure : −pd psi.

7.1. THE INTERACTION BETWEEN TWO PERFORATIONS IN THE SAME VERTICAL PLANE

It is assumed that the two perforations lie on the same vertical planeθ = 0 at some distanced
apart. The resulting flux from each perforation into the well is thus expected to be symmetric.
If the full solution outlined in Section 3, Equation (3.31), are used for a single perforation, the
resulting pressure field due to the two perforations can be written as

p(r, θ, z) =
∫ rb

ra

H1(r, θ, z)Q(r1) dr1 +
∫ rb

ra

H2(r, θ, z)Q(r2) dr2, (7.4)

with H1 andH2 defined as Equation (4.4) in Section 4. The above equation is solved to give
Q(r) along the length of the perforation which is later integrated over the perforation to give
the total flux denoted byQα. This result is then compared with the flux,Qβ , derived from
Equation (4.5) in Section 4 where a point source approximation is assumed for the interacting
perforation,i.e.
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Table 1. The resulting flux into the well of two
perforations interacting on the same vertical plane
with distanced inches apart.

d Qα Qβ Qγ

5 −10·65768 −10·58205 −10·55519

10 −11·43545 −11·41567 −11·31184

12 −11·60656 −11·59670 −11·49447

20 −11·98124 −11·99208 −11·87493

p(r, θ, z) =
∫ τb

τa

Hi(r, θ, z)Qi(ri) dri + Q̄j H̄j (r, θ, z), (7.5)

wherei, j = 1,2 and i 6= j with Hi given by Equation (4.4) and̄Hj by Equation (4.2).
The approximation method in Section 6, where the perforation is replaced by an ellipsoid,

gives another comparison to the above two methods. The flux derived here will be denoted by
Qγ , by use of the equation

pf = Qjpj(rj , θj , zj ;ωj )+
n∑

i=1;i 6=j
Qip̃i(rj , θj , zj ; ri, θi , zi), (7.6)

with pj and p̃i given by Equations (6.3) and (6.6). For this case, on the right of Equation
(7.6), we setrj = ra. This means that the effect of the wellbore on the ellipsoid is felt more
on those parts closer to the wellbore than far away. This approximation is not very important
for the effect of perforations far away and is justified by the agreement shown in Table 1. The
resulting flux of the above three methods are listed in Table 1 for various values of distance
between perforations. Note that for all the results in this section, the fluxQ has been scaled
by the factorpdκ/µ.

7.2. THE INTERACTION BETWEEN TWO PERFORATIONS ON THE SAME HORIZONTAL

PLANE

For this situation, there is also symmetry between the perforations so that Equation (6.3)
applies and full solution of the integral equation gives the fluxQα. The approximation where
one perforation is replaced by a single source of unknown strength gives the fluxQβ and the
ellipsoidal approximation the fluxQγ . As can be seen in Table 2, these approximations are
quite close to the full solution given byQα.

7.3. THE INTERACTION OFn PERFORATIONS SYMMETRICALLY PLACED IN THE SAME

HORIZONTAL PLANE

This generalises the problem of Section 7.2 above and again a comparison, given in Table 3,
between the full solution fluxQα and the approximationQβ andQγ can be made.
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Table 2. The resulting flux into the well of two per-
forations interacting on the same horizontal plane
with distanceφ apart.

φ Qα Qβ Qγ

π/4 −10·99771 −10·97143 −10·60587

π/2 −11·71390 −11·70034 −11·41816

π −12·06837 −12·05609 −11·87454

Table 3. The resulting flux into the well withn
perforations evenly placed on the same horizontal
plane.

n Qα Qβ Qγ

2 −12·06837 −12·05609 −11·87454

3 −11·30102 −11·27820 −10·96279

4 −10·51301 −10·47365 −10·03359

7.4. MORE GENERAL PERFORATION ARRANGEMENT

We present solutions by both approximate methods for perforations separated by a vertical
distanced and at various phase angles, all perforations having the same length. It can be seen
from Table 4 that the ordering of the fluxes is the same for both methods though the fluxes

Figure 4. Variation of flux along perforations. The circled curve is that given by a single perforation interacting
with the wellbore. The others are the flux variations from the example in Table 4 (Qβ case) where symmetry is
expected about the centre of the wellbore and consequently only four curves are shown.
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Table 4. The resulting flux into the well
with perforations spiral down the well;
d is the vertical separation andφ is the
phase angle.

d φ Qβ Qγ

0 0 −11·2753 −10·1317

10 π/4 −10·5016 −9·6374

20 π/2 −10·1000 −9·4937

30 3π/4 −9·9527 −9·3960

40 0 −9·9527 −9·3960

50 π/4 −10·0997 −9·4937

60 π/2 −10·5017 −9·6374

70 3π/4 −11·2756 −10·1316

calculated by the simple ellipsoid method are somewhat smaller than those predicted by the
method in Section 4.

7.5. FLUX VARIATION ALONG PERFORATIONS

As well as the average flux into a given perforation, the solution of the integral equation (3.31)
gives the variation of this flux along the perforation itself. Results for this variation are given
in Figure 4 forF(φ) of (3.34) and are presented for the cases outlined in Table 4 as well as for
a single perforation. All of these examples of perforations interact with the wellbore and the
resulting curves are normalised by the corresponding average flux into each perforation. Since
the actual flux into each perforation is given by (3.34),i.e. the values in the curve divided by
sin(φ), we would expectF(φ) to tend to zero asφ tends toπ which is the position of the
wellbore in this coordinate system (see Equation (3.32)). This is indeed the case shown by the
numerical results. Furthermore, the actual variations along each perforation is much the same
when normalised by the average flux which is what we might expect. In addition, the actual
flux is greatest at the end of the perforation in the matrix as it is singular there when we revert
to coordinates in terms ofrc using (3.32).

8. Discussion

The full numerical solution of the integral equation formation (3.31) for a single perforation
interacting with the wellbore gives a fluxQα = −12·6263 while the approximation of repre-
senting the perforation by an ellipsoid and its interaction with the wellbore approximated by
the method of Section 6 givesQγ = −12·5228. Tables 1, 2, 3 and 4 can be used to show how
different arrangements of perforations compete for the flow of fluid. For example, in Table 1,
as the spacing between two perforations in the same vertical plane increases, the flux into each
perforation increases but it is still less than that of an isolated perforation. For the situation
where the perforations are spaced in a horizontal plane, Tables 2 and 3, the interaction again
reduces the flux to individual perforation as might be expected. For example, in the case of
two perforations, the least interaction is when the perforations are at opposite sides of the
wellbore where the wellbore partially shields one from the other.
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This paper has described methods which treat the problem of flow into a wellbore through
perforations to various degrees of accuracy. First, the complete problem of a straight well
in a formation of isotropic permeability was analysed for the full transient problem of an
undamaged reservoir. The problem was reduced to integral equations along each perforation.
This problem becomes computer intensive if many perforations are involved and thus for the
steady flow case, certain approximations are used. The first of these replaces distant perfo-
rations by unknown source strengths when attention is directed to a particular perforation.
The variable source density of this particular perforation is then used to calculated its average
source strength as seen from the other perforations. This means that detailed calculation of
each perforation leads to a set of simultaneous equations for the average source strengths.
Finally, the flow into each perforation is compared with that from the full solution. The same
strategy is also applied to a simple ellipsoidal model for each perforation. These simpler
approximations thus become practicable for dealing with completion strategies which involve
many perforations distributed around the wellbore. Work on extending these methods to this
practical situation and allowing for anisotropic permeabilities is in progress.

Appendix. An approximate solution for pw – For the point source field of the steady
flow problem

For a point source of the strengthQ at position(xc, yc, zc), the field at position(r, θ, z) is
given by

pc = Q

4π
√
r2+ r2

c − 2rrc cos(θ − θc)+ (z − zc)2
, (A.1)

with
∂pc

∂r
= −Q[r − rc cos(θ − θc)]

4πR3/2
(A.2)

andR2 = r2 + r2
c − 2rrc cos(θ − θc)+ (z− zc)2.

If we assume that the wellbore radiusra is much less thanrc (i.e. ra � rc) then we can
approximate∂pc/∂r at the wellbore by(

∂pc

∂r

)
r=ra
≈ Qrc cos(θ − θc)

4πR3/2
0

, (A.3)

with R2
0 = r2

c + (z − zc)2.
We wish to represent the fluid pressure fieldp for the source together with an impermeable

wellbore as

p = pc + pw. (A.4)

Thus to evaluatepw we need to solve∇2pw = 0 with pw tending to zero at infinity and(
∂pw

∂r

)
r=ra
≈ −Qrc cos(θ − θc)

4πR3/2
0

, (A.5)

at r = ra. This last condition is an approximation based on the preceding argument with
ra � rc. It is clear of course that, whereas replacingR byR0 should be a good approximation
in this case, the approximation of the denominator is not so good whenθ−θc = π/2. However,
with ra sufficiently small this should not be a major error.

Since∇2pw = 0 can be written as



Flow efficiency of perforated systems177

1

r

∂

∂r

(
r
∂pw

∂r

)
+ 1

r2

∂2pw

∂θ2
+ ∂

2pw

∂z2
= 0, (A.6)

in cylindrical polar coordinates, we look for a solution in the form

pw = p̄w cos(θ − θc), (A.7)

and apply a Fourier transform overz to obtain

1

r

∂

∂r

(
r
∂ ¯̄pw
∂r

)
−
(
ξ2+ 1

r2

)
¯̄pw = 0, (A.8)

where

¯̄p =
∫ ∞
−∞

eiξzp̄w dz. (A.9)

The condition on∂pw/∂r at r = ra gives(
∂ ¯̄pw
∂r

)
r=ra
= −Q

2π
ξK1(rcξ)e

iξzc , (A.10)

since∫ ∞
−∞

eiξz′

(r2
c + z′2)3/2

dz′ = 2ξ

rc
K1(rcξ). (A.11)

The solution of∇2p = 0 satisfying this condition can be written as

pw =
−Q
2π

K1(rcξ)

K ′1(raξ)
K1(rξ) eiξzx , (A.12)

whereK ′1(z) = dK1(z)/dz.
Inverting this transform and referring back topw, we have

pw = −Q
2π

cos(θ − θc)
π

∫ ∞
0

cos(ξ(z − zc))K1(rξ)K1(rcξ)

K ′1(raξ)
dξ, (A.13)

This result looks somewhat different from that given in Equation (3.23). It is a great deal
simpler but is, of course, an approximation and should be compared with (3.23) multiplied by
Q. Noting thatI ′1(z) = 1/2 asz tends to zero, whereas limz→0 I

′
n(z) = 0 for n 6= 1, we see

that the above result then agrees with (3.23) if we allow the crude approximation of taking
these limits inside the integral sign.

Acknowledgements

The first author would like to thank Schlumberger Cambridge Research for their financial
support.



178 C. Y. Chen and C. Atkinson

References

1. J.M. McDowell and M. Muskat, The effect on well productivity of formation penetration beyond perforated
casing.Trans. Am. Inst. Mining, Metall. Petr. Eng.189 (1950) 309–312.

2. A.F. Van Everdingen, The skin effect and its influence on the productive capacity of a well.Trans. Am. Inst.
Mining, Metall. Petr. Eng.198 (1953) 17l–176.

3. M.H. Harris, The effect of perforating on well productivity,J. Petr. Eng.(April 1996) 518–28.
4. K.C. Hong, Productivity of perforated completions in formations with or without damage.J. Petr. Eng.(Aug.

1975) 1027–1038.
5. S. Locke, An advanced methods for predicting the productivity ratio of a perforated well.J. Petr. Eng.(Dec.

1981) 2481–2488.
6. S.M. Tariq, M.J. Ichara and L. Ayestaran, Performance of perforated completions in the presence of

anisotropy, laminations, or natural fractures.Soc. Petr. Engrs.(Nov. 1989) 376–884.
7. H.O. Jr. McLeod, The effect of perforating conditions on well performance.J. Petr. Eng.(Jan. 1983) 31–39.
8. L.A. Behrmann and T.Y. Hsia, Perforating skin as a function of rock permeability and underbalance. Paper

SPE 22810 presented at the 1991 SPE Annual Technical Conference and Exhibition, Dallas, Oct. 6–9.
9. J.M. Bonomo and W.S. Young, Analysis and evaluation of perforating and perforation cleanup methods.J.

Petr. Eng.(March 1985) 505–510.
10. E.A. Jr. Colle, Increased production with underbalance perforations.Pet. Eng. Intl.(July 1978) 39–42.
11. R.F. Krueger, An overview of formation damage and well productivity in oilfield operation.J. Petr. Eng.

(Feb. 1986) 131–152.
12. J.A. Regalbuto and R.S. Riggs, Underbalanced perforation characteristics as affected by differential pressure.

Soc. Petr. Engrs.(Feb. 1988) 83–88.
13. M.H. Harris, The effect of perforating on well productivity.J. Petr. Eng.(1996) 518–628.
14. J.A. Koltz, R.F. Kruger and D.S. Pye, Effect of perforation damage on well productivity.J. Petr. Eng.(1974)

1303–1314.
15. S. Locke, An advanced method for predicting the productivity ratio of a perforated well,J. Petr. Eng.(1981)

2481–2488.
16. Y.S. Dogulu, Modeling of well productivity in perforated completions.Soc. Petr. Engrs. paper 51048,

presented at the 1998 Annual Technical Conference and Exhibition, New Orleans, Louisiana.
17. J.R.A. Pearson and A.F. Zazorsky, A model for the transport of sand grains from a perforation during

underbalance surge.Soc. Petr. Engrs. paper 38634, presented at the 1997 Annual Technical Conference
and Exhibition, San Antonio, Texas.

18. M. Abramowitz and I.A. Stegun,Handbook of Mathematical Functions. New York: Dover (1965) 1046 p.
19. C. Atkinson, Asymptotic methods applied to problems of diffusion, crack propagation and crack tip stress

analysis, in mathematical models and methods in mechanics. Banach Center Publ. (1985) 7–48.


